要设(Mn,go)(n奇数)是紧Riemannian流形,λ(go)〉0,这里λ(go)是算子-4△go+R(go)的第一特征值,R(go)是(Mn,go)的数量曲率.设以(Mn,go)为初值的规范化的Ricci流的极大解g(t)满足|R(g(t))|≤C和λ(对某个常数C一致成立).我们证明这个解有子列收敛于一个Ricci收缩孤立子.进一步,当n=3时,条件fM |Rm(g(t))+n/2dμt ≤ C可去.
Let (Mn, go) with n odd be a compact Riemannian manifold with λ(go) 〉 0, where )λ(go) is the first eigenvalue of the operator --4△go+ R(go), and R(g0) is the scalar curvature of (Mn, go). Assume the maximal solution g(t) to the normalized Ricci flow with initial data (Mn,go) satisfies |R(g(t))| ≤ C and fM |Rm(g(t))+n/2dμt ≤ C uniformly for a constant C. Then we show that the solution sub-converges to a shrinking Ricci soliton. Moreover,when ~ : 3, the condition fM |Rm(g(t))+n/2dμt ≤ C can be removed.