针对特征权重自调节软子空间聚类(softsubspaceclusteringwithfeatureweightself-adjustmentmecha-nism,SC-FWSA)算法使用欧氏距离,存在对数据适应性较差的问题,将SC-FWSA算法中的欧氏距离拓展为闵科夫斯基距离(Minkowskidistance),提出一种基于闵科夫斯基距离的特征权重自调节软子空间聚类(Minkowskidistancebasedsoftsubspaceclusteringwithfeatureweightself-adjustmentmechanism,MSC-FWSA)算法,MSC-FWSA算法有效提高了SC-FWSA算法对数据的适应性。若干真实数据集上的对比性实验验证了MSC-FWSA算法的有效性。
Seeing that SC-FWSA clustering algorithm used Euclidean distance and had a poor adaptability to data,this paper extended Euclidean distance in SC-FWSA clustering algorithm to Minkowski distance, and proposed a Minkowski distance based soft subspace clustering with feature weight self-adjustment mechanism( MSC-FWSA) . MSC-FWSA improves the adaptability of the SC-FWSA algorithm to data. Comparative experiments presented on some real data sets show the effectiveness of the MSC-FWSA algorithm.