研究一类细胞对细胞作用的同时具有密度制约和Beddington-DeAngelis感染函数的HIV-I模型的全局稳定性,由图形的几何特性得到正平衡点的存在,通过分析特征方程,运用Routh-Hurwitz定理,给出该模型非负平衡点的局部稳定性;通过构造适当的Lyapunov函数,利用LaSalle不变集原理和正定二次型函数的性质,得到了未感染平衡点以及感染平衡点的全局稳定性.
The global stability of a HIV-I model with density-dependence and Beddington-DeAngelis functional response is considered in this paper.The existence of positive equilibrium is obtained by graphic geometric features,and the local stability of equilibrium is discussed by analyzing the corresponding characteristic equations.Furthermore,the global stability of uninfected equilibrium and infected equilibrium is established by Lyapunov function and the properties of positive definite quadratic function.