位置:成果数据库 > 期刊 > 期刊详情页
基于规划图的蚁群规划算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中山大学软件研究所,广东广州510275, [2]广东商学院数学与计算科学学院,广东广州510320
  • 相关基金:国家自然科学基金项目(60773201);广东省自然科学基金项目(06301003).
中文摘要:

图规划是智能规划领域近年来出现的一种重要规划方法,对智能规划的发展起到了很重要的推动作用,图规划算法首先扩展生成规划图,然后通过逐层组合不断回溯的穷举方式进行解提取,这种方式使解提取不仅耗时而且容易陷入局部搜索中。在规划图基础上定义了蚁群智能体,并定义了在规划图上的蚁群搜索方式,提出了蚁群规划算法,使搜索具有较好的全局性和并发性,并具备加速收敛的寻解能力。实验表明,蚁群规划算法在求解一些相对规模较大的规划问题时有更好的优越性。

英文摘要:

Graphplan is an important algorithm of intelligent planning in recent years. It has promoted great development of intelligent planning. Firstly, the Graphplan algorithm will generate a planning graph by action level expanding and proposition level expanding alternatively. Secondly, a valid plan will be extracted from the planning graph by backtracking in exhaustive way. The plan extracting of the algorithm always consume too much time in this way. And the algorithm is apt to plunge into the local searching. In this paper, a way of plan solution searching by using the ant colony algorithm is given. That is the ACP (ant colony planner) algorithm. In the ant colony algorithm, positive feedback and distributed coordination are used to find the solution path. And the ant colony algorithm even has the characteristic of robustness, thus it has been successfully applied in many applications which are NP-hard problems. The searching of the ACP has the characteristic of global and parallel searching. And ACP has the ability of convergence acceleration in the solution searching. The experiments show that ACP is advantage ous especially in solving the large scale planning problems. To absorb the optimizing technique and the learning technique is a rising way in the study of the intelligence planning. Since the ant colony planning algorithm is just based on the optimizing technique, thus the ant colony planning algorithm is promising to make some better progresses in the study of intelligence planning area by using the ant colony planning method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349