提出一种弱耦合2RRPaR+PPaP三平移操作机器人机构,分析了机构的自由度及拓扑结构特征;推导了机构的正逆解方程以及速度、加速度模型,根据速度雅可比矩阵,分析了机构的奇异位置;根据机构的逆解方程和主要约束,采用三维极坐标边界搜索法绘制了机构的工作空间三维实体图和截面图;由ADAMS三维模型仿真和运动正解方程计算所得的位移、速度、加速度曲线基本一致,验证了运动方程的正确性。该机构解耦性好、结构简单、运动灵活,在纵向移动方向上具有部分解耦和工作空间大的优点,适合用作生产线自动操作手机构。
A weak-coupling three-translation parallel robot mechanisms was introduced, which was composed of two RRPaR branches and one PPaP. Firstly, the topological structural characteristics and DOF of the mechanism were analyzed through POC(position and orientation characteristics) theory. Secondly, the forward and inverse solutions of the mechanism and the model of velocity and accelera- tion were derived. Based on the speed Jacobi matrix, the singular positions of the mechanism were an- alyzed. According to the inverse solution equations and the main constraints of the mechanism, 3D po- lar boundary search method was used to draw the 3D solid and sectional drawings of the mechanism. The displacement, velocity and acceleration curves obtained from the solid model and mathematical model were basically consistent, which verified the correctness of the motion equations. The mecha- nism has the advantages of good decoupling performance, simple structure and flexible movement, and has the advantages of partial decoupling and large working spaces in the longitudinal direction of movement, and is suitable for the automatic operations of the automata structures for production lines.