本文得到一个涉及分担函数的亚纯函数族的正规定则:设F是区域D内的一族亚纯函数,k,l是正整数,ψ(z)季0为区域D内全纯函数,且其零点重数至多为l,如果对F中的任意函数,ff≠0,且f的所有极点重数都至少是l+1,如果F中的任意函数f与g满足f^(k)与g^(k)在D内分担ψ(z),那么F在D内正规.
This paper obtains a normal criterion of families of meromorphic functions, stating that a family F of mero morphic functions, whose multiplicities of all the poles are at least l + 1, is normal in D, if for each f ∑ F, f(z) ≠ 0, and for each f∑ g∑ F, .f^(k) and g^(k) shareψ(z) in D, where ψ(z) ≠0 is a holomorphie function, whose multiplici- ties of zeros in D are at most l, where k, l are positive integers.