针对海上微动目标回波信号具有稀疏性的特点,该文研究了稀疏域微动特征提取和检测方法,提出一种基于形态成分分析(MCA)的海杂波抑制与微动目标检测方法.该方法充分利用海杂波和微多普勒信号组成成分的形态差异性,对不同源信号采用不同的字典进行稀疏表示,区分海杂波与微动目标.此外,提出的稀疏域海杂波抑制方法,能够在抑制海杂波的同时积累更多的信号能量,改善信杂比.仿真和实测数据验证了算法的正确性.
Using the sparse property of the signal from a marine micromotion target, the extraction and detection of micromotion signatures in sparse domain are studied. An algorithm for sea clutter suppression and micromotion target detec- tion is proposed based on the morphological component analysis (MCA). The algorithm takes full advantage of the morpho- logical differences between sea clutter and micro-Doppler signal, and can separate them via sparse representation of different source signals using different dictionaries. Moreover, the proposed sea clutter suppression method in sparse domain can a- chieve both target' s energy accumulation and sea clutter suppression with improved signal-to-clutter ratio (SCR). Simulated and real data all verify the effectiveness of the proposed method.