位置:成果数据库 > 期刊 > 期刊详情页
基于Contourlet变换和主成分分析的高光谱数据噪声消除方法
  • 期刊名称:电子与信息学报
  • 时间:0
  • 页码:2892-2896
  • 语言:中文
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西北工业大学自动化学院,西安710072
  • 相关基金:国家自然科学基金(60802084)资助课题
  • 相关项目:基于非自适应多尺度几何分析的图像融合研究
中文摘要:

该文提出了一种适合于高光谱超维数据处理的基于Contourlet变换和主成分分析的噪声消除方法。该方法首先利用Contourlet变换实现图像的稀疏表示,再利用主成分分析对Contourlet系数进行适当地消噪处理。通过对OMIS图像的实验结果表明该方法能够同时消除高光谱多个波段图像中的噪声,从整体上改善高光谱图像质量,且性能上要优于PCA和Contourlet变换方法。

英文摘要:

This paper proposes a denoising method of hyperspectral super-dimensional data based on Contourlet transform and principal component analysis. At first the sparse representation of images is accomplished with Contourlet transform. Then the Contourlet coefficients are processed with principal component analysis. The experimental results based on OMIS images show that the proposed method can simultaneously eliminate noises in multi-band hyperspectral images, improve the quality of the whole hyperspectral data and outperforms methods based on PCA and Contourlet transform respectively.

同期刊论文项目
期刊论文 40 会议论文 3 专利 7
同项目期刊论文