由于红外图像和可见光图像的成像特点不同,因此在航空监视领域红外图像和可见光图像融合有重要的研究意义。由于非下采Contourlet变换具有更好的方向性、较高的逼近精度和更好的稀疏表达性能,能有效的提取图像的特征信息。因此我们在非下采Contourlet域,以空间频率为度量标准对红外图像进行阈值分割,经过分割将红外图像和可见光图像分别划分为目标区域以及背景,随后对红外图像和可见光图像进行边缘检测从而得到边缘区域,针对三个不同区域分别选择不同的融合规则进行融合。通过两组不同灰度差异的红外与可见光图像的实验,将基于像素点,窗口策略的融合算法和本文所提出基于区域算法进行了主观和客观的对比,试验结果表明基于区域分割的红外与可见光图像融合算法不仅能有效提取出红外图像中的目标信息还能有效的保持可见光图像的所反映的光谱信息,因此本文提出的算法是一种有效且可行的图像融合算法。
This article proposes a novel method to fuse infrared and visible light images based on region segmentation. Region segmen-tation is used to determine important regions and background information in the input image. The non-subsampled contourlet transform (NSCT) provides a flexible multiresolution,local and directional image expansion,and also a sparse representation for two-dimensional (2-D) piecewise smooth signal building images,and then different fusion rules are applied to fuse the NSCT coefficients fo...