给出了一种基于átrous算法红外与可见光图像融合算法,该算法主要针对光谱差异较大以及配准精度较低的这类图像的融合算法。该算法首先对融合图像源进行átrous算法分解;随后,对分解的低频信息利用取加权法进行融合;高频信息首先利用边缘检测技术对不同尺度不同方向的高频信息进行边缘点的加强,然后以区域的空间频率为度量标准得到新的高频系数;最后进行átrous算法重构得到最终的融合图像。通过两组红外和可见光图像的融合实验,结果表明该方法能有效地突出边缘细节,提高图像分辨效果和人眼对场景目标的发现和识别概率。
Infrared image and visual light image fusion method based on á trous transform is proposed.This algorithm aims at those images with different spectrum and low accuracy registration.Firstly,the original images are decomposed using á trous transform,Low frequency band decide the general image and the high frequency band contain some important information and notable character.In this paper,average mean is used for low frequency coefficient fusion.The high-frequency can be enhanced by edge detection and then local spatial frequency and is taken as measures to obtain the fused high-frequency.Experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image through fusion of low light visible image and infrared image.