为求解一类非线性矩阵方程的对称解,提出一种双迭代算法。运用牛顿迭代解法求解一类非线性矩阵方程的对称解,应用修正共轭梯度法求解由牛顿法每一步迭代所得到的线性矩阵方程的对称解或最小二乘对称解。数值实例表明,该双迭代算法是有效的。
Double iterative algorithm is studied to solve the symmetric solutions of a nonlinear matrix equation.In this paper,Newton's method is used to solve the symmetric solutions of a nonlinear matrix equation.Then the modified conjugate gradient method is applied to find the symmetric solutions or symmetric lest-square solutions of a linear matrix equation derived from each iterative step of Newton's method.Thus a double iterative algorithm is established to slove symmetric solution of a nonlinear matrix equation.And the numerical example illustrates that the double iterative algorithm is effective.