研究了与满足变形Lr-Hoormander条件的奇异积分算子和加权Lipschitz函数生成的Toeplitz算子Tb的sharp极大函数的点态估计,并应用该点态估计证明了Toeplitz算子Tb是从Lp(w)到Lq(w1q)上的有界算子;此外还建立了与变形Lipschitz条件的奇异积分算子和加权BMO函数相关的Toeplitz算子Tb的sharp极大函数的点态估计,证明了这类Toeplitz算子是从Lp(μ)到Lq(ν)上的有界算子。
In this paper, the pointwise estimate for the sharp maximal function of the Toeplitz operators Tb generalized by some singular integral whose kernel satisfied some variant Lr-Hormander condition and weighted Lipschitz function is established. The authors proved that Tb is bounded from Lp(w) to Lq(w1q). On the other hand, the pointwise estimate for the Toeplitz operator Tb generalized by weighted BMO function and singular integral with a variant Lipschitz condition kernel is also established. Meanwhile the (Lp(μ), Lq(ν))-boundedness for Tb is also proved.