电子元件的超微型化和高集成化,对金属互连线的导热性能提出极高的要求;同时,新型高性能光电材料的开发,又需要尽可能降低受光激发电子与声子之间的耦合。电子、声子的相互作用,对于能量转换与传递过程微观机理的研究至关重要。这些载能粒子的作用时间都在飞秒-皮秒量级,本文采用飞秒激光瞬态热反射方法,对铜薄膜中微观粒子作用过程进行了飞秒量级的实验研究。通过对实验系统精细调节,得到了理想的信号曲线,在此基础上测量了不同泵浦光功率下沉积在硅基底上厚度为60nm铜薄膜的电子-声子耦合系数,测量结果为(11-12)×10^16W/(m^3K),和理论值14×10^16W/(m^3K)较为接近,并且不随泵浦光强发生变化。
Metallic thin wires are widely used as interconnectors in the ultra-miniature and highly-integrated systems and expected to exhibit high heat conductance. While in the development of novel photoelectric material, the coupling between electrons and phonons should be reduced as much as possible. The electron-phonon coupling is dominant to energy exchange in metals and the interaction time is in the order of femto to picoseconds. In this paper, the electron-phonon coupling factor of a copper nanofilm with thickness 60 nm deposited on the silicon substrate is measured using the transient thermoreflectance technique. The measured coupling factor is (11-12)×10^16 W/(m^3K) and very closed to the theoretical value 14×10^16 W/(m^3K).