位置:成果数据库 > 期刊 > 期刊详情页
基于增长模型的非随机缺失数据处理:选择模型和极大似然方法
  • ISSN号:1671-6981
  • 期刊名称:心理科学
  • 时间:0
  • 页码:-
  • 分类:O242.2[理学—计算数学;理学—数学]
  • 作者机构:[1]北京师范大学心理学院,北京100875
  • 相关基金:本研究得到国家自然科学基金(31100759)、全国教育科学“十二五”规划教育部重点课题(GFA111001)和北京市与中央在京高校共建项目(019-105812)的资助.
  • 相关项目:追踪研究中潜类别混合模型和多阶段发展模型分析方法及其应用
作者: 陈楠|刘红云|
中文摘要:

对含有非随机缺失数据的潜变量增长模型,为了考察基于不同假设的缺失数据处理方法:极大似然(ML)方法与Diggle—Kenward选择模型的优劣,通过MonteCarlo模拟研究,比较两种方法对模型中增长参数估计精度及其标准误估计的差异,并考虑样本量、非随机缺失比例和随机缺失比例的影响。结果表明,符合前提假设的Diggle-Kenward选择模型的参数估计精度普遍高于ML方法;对于标准误估计值,ML方法存在一定程度的低估,得到的置信区间覆盖比率也明显低于Diggle—Kenward选择模型。

英文摘要:

Longitudinal data analysis is a widely-used technique in psychological studies. However, since it is time consuming with a large number of repeated observations, missing data is a common problem and usually occurs via the missing not at random (MNAR) mechanism. Methods for handling missing data have developed for a long time; however, because the MNAR mechanism itself cannot be tested, nor can the assumptions of different models under MNAR, it is still not an easy task for practitioners to select an appropriate method for handling the MNAR missing data. Inappropriate methods may bias parameter estimates and even mislead the study results due to the violation of model assumptions. The objective of the current study is to investigate the effects of method selection when fitting a latent growth curve model with longitudinal datasets. Two approaches under different assumptions were compared in handling the MNAR missingness in a five-wave longitudinal dataset using the Monte Carlo simulation: one is the Diggle-Kenward selection model under the MNAR mechanism, the other is the Maximum Likelihood (ML) method under the MAR mechanism. Three factors were simultaneously considered in this study: (i) the sample size (100, 300, 500, 1000), (ii) the percentage of MNAR missing data (5%, 10%, 20% 40%), and (iii) the percentage of MAR missing data (0%, 10%, 20%). So a total of 4×4×3=48 conditions were generated, and 500 replicates were used in each of the conditions. The performances in estimating parameters (the means and variances of intercept and slope, i.e.μi, μs, σi2 and σs2) of these two approaches were then evaluated according to two criteria, namely, root mean square error (RMSE), and coverage rates of the 95% CIs. The estimations of standard errors (SEs) were also considered. Results indicated that: (i) higher precision of estimates were obtained from the Diggle-Kenward selection model, especially under the conditions of high percentage of MNAR missing data. ?

同期刊论文项目
同项目期刊论文
期刊信息
  • 《心理科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术学会
  • 主办单位:中国心理学会
  • 主编:李其维
  • 地址:上海市中山北路3663号
  • 邮编:200062
  • 邮箱:xinlikexue@vip.163.com
  • 电话:021-62232236
  • 国际标准刊号:ISSN:1671-6981
  • 国内统一刊号:ISSN:31-1582/B
  • 邮发代号:4-317
  • 获奖情况:
  • 为国务院学位办审定为核心期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国社科基金资助期刊,中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:46796