位置:成果数据库 > 期刊 > 期刊详情页
城市道路状况概率神经网络判别方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学,广州510640, [2]广东交通职业技术学院,广州510650
  • 相关基金:国家高技术研究发展汁划(863)(Ihe National High-Tech Research and Development Plan of China under Grant No.2006AA11z211).
中文摘要:

针对移动交通流检测信息的特点,在分析概率神经网络与Global K-means聚类算法的基础上,提出了一种基于移动交通流检测信息的城市路况概率神经网络判别方法。通过分析路况的相关因素,同时考虑信号控制交叉口红灯对车辆行程时间延误的影响,利用Global K-means算法改进的概率神经网络对探测车采集的实时交通信息进行处理,进而得出城市的道路状况。应用结果表明该方法能够有效地判别和跟踪道路状况的变化,比不考虑交叉口红灯的影响时能够更准确地反映城市道路的路况信息。

英文摘要:

A traffic condition recognition method based on floating car data is proposed by analyzing Probability Neural Network (PNN) and Global K-means algorithm.The related factors of traffic condition and the collection method of floating car data are presented.Considering the influence of traffic control intersection delay to travel time,a probability neural network classifier is designed using Global K-means algorithm and applied to the recognition of traffic condition with floating car data.The experiment results show that the method can recognize traffic condition well,which can reflect traffic condition better than that without considering traffic control intersection delay.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887