针对大多数信息传播的研究均只考虑邻居的问题,本文提出了一个具有跨邻居传播能力的信息辐射模型.该模型结合复杂网络理论、平均场理论和辐射理论,建立了以物理层为网络结构基础、以辐射层为信息传播环境、以状态层为辐射状态统计的三层信息辐射网络模型.通过定义节点状态之间的转换规则和相关网络统计量,引入辐射范围和辐射衰减量,分析了辐射机理并推导了辐射阈值表达式.在不同的复杂网络中,利用数值仿真验证了理论分析的正确性和模型的有效性,分析了节点之间的状态转换概率和辐射衰减量对信息辐射的影响规律.
Information is spread as a kind of energy in the network, and it has the ability to spread to nodes that go beyond the neighbors, that is, the information has a radiation effect. However, most of the studies of information dissemination in complex networks only consider the dissemination between neighbors, ignoring that their neighborhood will also be affected by the information radiation. According to this, we propose a new information radiation model with the ability to communicate across neighbors. Firstly, the concepts of information radiation range and radiation attenuation are put forward by combining the theory of complex network and the radiation theory. Secondly, by proposing the hypotheses and analyzing the information content, the nodes in the network are divided into three states: the radiation state, the known state, and the unknown state with the information amount serving as the criterion. At the same time, the transition rules between node states are defined. Thirdly, a three-layer information radiation network model is established based on the physical layer serving as the network structure, the radiation layer as the information dissemination environment,and the state layer as the radiation state statistics. Then, on the basis of the model, the differential equations of the state changes of the nodes are constructed by using the mean field theory and defining the network statistic such as the nth degree, the average nth degree and the nth degree distribution. By analyzing the mechanism of information radiation, the expression of information radiation threshold is deduced by using the differential equation set. Afterwards,the existence of information radiation threshold is proved in each of NW network, BA network, Jazz network, Net-science network, and E-mail network. And the results of numerical simulation and theoretical analysis are well fitted, verifying the correctness of theoretical analysis and the validity of the model. Finally, considering the practical situation of the application, th