We create weakly bound Feshbach molecules in ultracold Fermi gas 4~K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency (RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules.