位置:成果数据库 > 期刊 > 期刊详情页
核偏最小二乘算法的图像超分辨率算法
  • ISSN号:1001-0548
  • 期刊名称:Journal of the University of Electronic Science an
  • 时间:2011.1.1
  • 页码:105-110
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学电子信息学院,成都610064
  • 相关基金:教育部重点项目(107094); 国家自然科学基金(61071161)
  • 相关项目:多视频时空超分辨率重建技术研究
中文摘要:

提出了基于核偏最小二乘算法(KPLS)回归的超分辨率复原算法。该算法首先将高低分辨率图像块的高频信息和中频信息作为建立回归关系的特征,并对图像进行分块;依据相应的高低分辨率图像块的关系,使用KPLS建立起回归模型;在复原时,依据该模型回归得到高分辨率的图像块,将图像块拼接为高分辨率的图像。通过对人脸图像和车牌图像的实验结果,表明该算法无论是对人脸图像还是车牌图像都能取得较好的复原效果。

英文摘要:

A learning-based super-resolution algorithm based on Kernel Partial Least Squares(KPLS) regression is proposed.First,KPLS regression algorithm is introduced.Then a super-resolution algorithm based on KPLS regression is analyzed.High resolution images use the high-frequency information as their feature,while low resolution images use middle-frequency as their features.Based on the relationship of the high and low resolution images,KPLS is used to set up regression model.The regression model is applied to infer high-resolution image.The experimental results show that our method can achieve very good results to face images and car plate images.The results of our method are closer to the real images.

同期刊论文项目
期刊论文 39 会议论文 1 专利 5 著作 1
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314