引进新的具有系数s的b—D-度量空间,在给出该空间上序列的柯西判别法后,利用给定的4个自映射S,T,I,J构造收敛序列,并证明了该序列的极限是S,T,I,J的唯一公共不动点.所得结论是Banach型、Kannan型及变形的Kannan型(公共)不动点定理在具有系数s的b-D-度量空间上的推广结果.
We introduce a new metric space, i. e. , b-D-metric spaces with a coefficient s, and give the Cauchy test for the given sequence on this space, then we use the given four self-mappings S, T, I, J to construct a convergent sequence and prove that the limit of the sequence is the unique common fixed point of S, T, I, J. The obtained results are the generalizations of Banach type, Kannan type and variant Kannan type (common) fixed point theorems on b-D- metric spaces with a coefficient s.