位置:成果数据库 > 期刊 > 期刊详情页
TC4钛合金超高周次轴向振动疲劳试验
  • ISSN号:1001-4888
  • 期刊名称:《实验力学》
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] O346.2[理学—固体力学;理学—力学]
  • 作者机构:Aeronautics and Astronautics Engineering College,Air Force Engineering University, School of Software,XiDian University
  • 相关基金:supported by the National Natural Science Foundation of China(No.51175509)
中文摘要:

Fatigue damage monitoring is critical metallic structure health monitoring of aircraft.The sensor should be high sensitive,easy to be integrated into structure and well adaptable for poor working conditions.Therefore,an attached eddy current sensor with flexible plane is put forward and its characteristics are analyzed.By extracting material′s conductivity as the crack features,forward semi-analytical model is established and parameter optimizations are carried out.Crack perturbation model of attached eddy current sensor is constructed,and perturbation voltages of sensing channels under three-dimension structural crack are obtained.To verify the sensor′s performance,monitoring experiment on crack extension is conducted under condition of 3 MHz frequency.The validation experimental results show that perturbation model of 2A12-T4 aluminum alloy agrees well with experiment results,and perturbation model errors of four sensing channels are within 25%.The attached eddy current sensor is capable of testing the crack nondestructively and measuring the crack extension quantitatively with the accuracy of 1mm.

英文摘要:

Fatigue damage monitoring is critical metallic structure health monitoring of aircraft.The sensor should be high sensitive,easy to be integrated into structure and well adaptable for poor working conditions.Therefore,an attached eddy current sensor with flexible plane is put forward and its characteristics are analyzed.By extracting material′s conductivity as the crack features,forward semi-analytical model is established and parameter optimizations are carried out.Crack perturbation model of attached eddy current sensor is constructed,and perturbation voltages of sensing channels under three-dimension structural crack are obtained.To verify the sensor′s performance,monitoring experiment on crack extension is conducted under condition of 3 MHz frequency.The validation experimental results show that perturbation model of 2A12-T4 aluminum alloy agrees well with experiment results,and perturbation model errors of four sensing channels are within 25%.The attached eddy current sensor is capable of testing the crack nondestructively and measuring the crack extension quantitatively with the accuracy of 1mm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《实验力学》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国力学学会 中国科学技术大学
  • 主编:于起峰
  • 地址:安徽省合肥市金寨路96号中国科技大学
  • 邮编:230026
  • 邮箱:sylx@ustc.edu.cn
  • 电话:0551-3601246
  • 国际标准刊号:ISSN:1001-4888
  • 国内统一刊号:ISSN:34-1057/O3
  • 邮发代号:26-57
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:6587