大量跨江跨海等跨越通航水域桥梁的建设,在构建立体交通、促进区域经济发展的同时,也对水上交通运输造成了不利影响,随着船舶尺度和通航密度的增大,船-桥碰撞事故风险逐步提升,桥梁及桥区通航安全问题亟待解决。本项目拟应用现代船舶操纵理论和船舶水动力干扰理论,对复杂环境条件影响下的多船间水动力干扰开展建模研究,通过在控制力、船-船干扰力、船-桥干扰力和风、流等环境力作用下的船舶运动建模,研究船舶在受控和欠控运动状态下的船-桥碰撞机理,并对船舶失控撞击桥梁的危险水域进行辨识及预警,建立基于智能预测控制方法的桥梁防船撞预控模型,形成船-桥防撞预控机制,提出防止失控船舶撞击桥梁的应急方案。研究成果通过与ECDIS和IBS的嵌入,可实现船-桥防撞的预警和预控,对船舶驾引人员的不作为或不当作为做出桥梁撞击预警或实现自动强制避碰。本项目研究成果可以丰富交通运输基础理论,为水路交通安全减灾技术探索出一个全新的领域
ship-bridge;collision mechanism;pre-control model;;
大量跨江跨海等跨越通航水域桥梁的建设,在构建立体交通、促进区域经济发展的同时,也对水上交通运输造成了不利影响,随着船舶尺度和通航密度的增大,船-桥碰撞事故风险逐步提升,桥梁及桥区通航安全问题亟待解决。本课题应用现代船舶操纵理论和船舶水动力干扰理论,对复杂环境条件影响下的多船间水动力干扰开展建模研究,通过在控制力、船-船干扰力、船-桥干扰力和风、流等环境力作用下的船舶运动建模,研究船舶在受控和欠控运动状态下的船-桥碰撞机理,并对船舶失控撞击桥梁的危险水域进行辨识及预警,建立基于智能预测控制方法的桥梁防船撞预控模型,形成船-桥防撞预控机制。在受控、欠控桥梁船撞机理研究方面,建立了干扰水动力计算模型,分别对对遇、追越情况下的船间干扰力进行了研究,得出了船间干扰力的作用范围及变化规律。对遇和追越情况下,船间干扰力和转船力矩均在两船纵距约为1.5倍船长左右开始作用,船间干扰力和船间干扰转船力矩都随两船横距的减小而增大,两船横距变化对对遇和追越情况下的船间干扰力和转船力矩开始作用的起点影响较小。在船舶受控、欠控过桥运动航迹控制方面,建立了船舶受控、欠控运动模型;开发了模糊PID控制算法;根据仿真模拟实验结果最终得到船舶安全通过连续弯曲航道的控制策略,并对不同舵角组合操纵效果进行了分析与仿真,确定了特定条件下的船舶最优操纵策略。在船舶失控撞击桥梁危险水域分析方面,基于船-桥水动力临界干扰区的桥墩邻近桥区水域边界界定了桥梁禁入区,建议船-桥之间横向留出不少于1倍船宽的安全间距,作为桥区水域范围的横向边界;基于船舶应急复航尺度的桥区水域边界界定了桥区水域重点监管区,并采用交通流反演的桥区特征水域反演技术,确定了桥梁不同断面的桥区水域范围纵向尺度;运用蒙特卡洛随机模拟的方法,建立了船舶失控状态下的船-桥碰撞概率与桥区水域范围的关系模型。界定了计入船舶失控影响的桥区水域警戒区,为海事部门科学监管,保障桥区水域船舶通航安全及应急抢险提供科学依据,以避免因船舶失控导致船-桥碰撞事故的发生。本项目从受控船舶、船舶应急操纵和失控船舶三个层面对桥区水域进行了界定,并将桥区水域范围划定为三个区域,使桥区水域的界定更加科学化、定量化,桥区水域的监管也因为三个区域的划分变得更加具有针对性。研究成果可以丰富交通运输基础理论,为水路交通安全减灾技术探索出一个全新的领域。