Turing模式普遍存在于物理、化学、生物等领域的非线性动力系统。本项目研究具有全局时滞的种群动力学模型,证明在某些参数条件下全局时滞能够导致Turing模式生成,从而解释封闭生态系统中种群空间分布不均匀的现象。首先分析正平衡点的局部稳定性和全局稳定性,给出Turing模式的色散关系和Turing参数空间;然后利用Hopf分支理论以及拓扑度方法,研究相应模型的稳态问题,即椭圆方程组非常数正解的存在性;最后应用有限体积数值计算方法,模拟出不同模式(比如条纹或者圆点)的斑图,研究全局时滞对于模式选择的影响,并利用大量的计算机数值模拟实验,研究Turing模式关于初始值的稳定性。每次实验对初始值取不同振幅,找到Turing模式发生时的振幅临界值。这些问题属于当前生物数学和偏微分方程的前沿研究领域,展开对它们的研究有助于加深理解和认识自然界中的非线性现象。
英文主题词Turing pattern;Global time delay;Population dynamics;Pattern selection;