本项目将研究3维Lorentz空间中伪圆的模空间中的共形不变量以及类空,类时,类光伪圆纹Willmore曲面的分类问题,并研究S^4中的共形曲面论及其应用。关于3维Lorentz空间中伪圆的共形不变量系统的研究具有重要作用,我们首先将对伪圆的模空间进行深入研究,并由此找出共形不变的度量,测地线,并由此来研究伪圆纹曲面的分类问题,我们将结合Willmore条件和零中曲率条件,来完全分类一些特殊的曲面;同时,在4维球面S^4中构造共形不变量系统,来研究共形曲面论。在项目的研究中希望找出几何对象Lorentz空间中伪圆纹曲面与代数结构模空间中测地线之间的联系,丰富它们的内容,发现新的方法及其应用。
英文主题词Moduli Space;Geodesic;Surface foliated by pseudo-circles;Willmore Surface;Elastic curve function