运动公式理论是积分几何中的重要课题之一。本项目首先通过陈省身齐性空间积分几何理论和活动标架法研究一般齐性空间中关于两交子流形的夹角,通过活动标架法研究两相交线性子空间的不变密度,并将该不变密度和S.S.Chern在[SC]得到的微分公式建立联系,通过积分几何办法获得关于夹角的任意方幂的运动公式。再次,拟对比研究凸几何中经典的John椭球、Petty椭球、Legendre椭球及LYZ椭球,综合运用活动标架法、Valuation理论、代数学知识与积分几何知识,定义与流形对应的平均曲率椭球,并研究新椭球的几何性质,拟给出关于平均曲率矩阵的运动公式的刻画。这些研究对丰富和发展积分几何有一定的意义。
英文主题词integral geometry;geometric inequality;kinematic formula;the total mean curvature matrix;