位置:立项数据库 > 立项详情页
Banach空间上算子广义逆$A_{T,S}^{(2)}$的研究
  • 项目名称:Banach空间上算子广义逆$A_{T,S}^{(2)}$的研究
  • 项目类别:地区科学基金项目
  • 批准号:11061005
  • 申请代码:A011705
  • 项目来源:国家自然科学基金
  • 研究期限:2011-01-01-2013-12-31
  • 项目负责人:刘晓冀
  • 负责人职称:教授
  • 依托单位:广西民族大学
  • 批准年度:2010
中文摘要:

在处理很多无限维不适定问题时,会涉及到广义逆,研究算子广义逆具有重要的理论意义和应用价值。本项目致力于利用Banach空间中线性算子的分块矩阵表示、算子的谱理论和广义逆代数理论,对Banach空间中线性算子广义逆 $A_{T,S}^{(2)}$的表示与迭代等进行深入,细致的研究,从而将有限维线性空间广义逆的相关理论推广到无限维,同时将我们获得的结果应用到有限维线性空间、Banach代数和C*代数等领域,得到更为深刻的结果。

结论摘要:

已经超额完成预定的计划,并发表学术论文34篇(其中被SCI 检索26篇),六次参加国际学术会议并做学术报告。利用算子的矩阵表示我们建立了Banach空间上线性算子广义逆 的积分和极限表示,给出广义逆 的表征,建立Banach空间上线性算子广义逆 的扰动理论。构造了了Banach空间上线性算子广义逆 新的迭代格式,讨论迭代的误差分析 。研究Banach空间上AXB=D算子方程有特定解的条件,给出特定解的一般形式. 同时将我们获得的结果应用到有限维线性空间、Banach代数和C*代数等领域,如我们得到了C*代数元素反序律成立的条件,建立了反序律与偏序之间的联系。


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 37
  • 0
  • 0
  • 0
  • 0
期刊论文
相关项目
刘晓冀的项目