蜂窝夹层结构作为吸能构件在汽车领域应用日益广泛。冲击载荷作用下的抗撞性优化问题是困扰汽车行业的一个难点,一是因为冲击问题直接关系到结构的完整性和安全性;二是因为冲击问题是强非线性问题。而蜂窝夹层结构的复杂构型,使的其抗撞性能与材质、容重、边长、壁厚、夹角、高度等因素有很大关系。本项目以解决蜂窝夹层结构抗撞性优化问题为目标,重点围绕形状拓扑设计的关键性基础理论问题进行研究。考虑到结构接触-碰撞问题的复杂性,本项目将尝试以渐进结构优化方法、响应面法和其它无梯度算法等优化设计方法为主体,对冲击载荷作用下的波纹形、正六边形、正四边形和正三角形等一系列的蜂窝夹层结构进行抗撞性能的尺寸和形状优化,并对蜂窝夹层结构的夹芯构型进行抗撞性拓扑优化,从而提出轻质、强忍、抗撞击的创新夹层构型。试验验证的最优结果有望用于车身设计,以适应汽车工业在轻量、安全、节能方面的发展主题。
honeycomb sandwich structures;crashworthiness;optimization;surrogate model;explicit finite element method
本课题基于显式有限元数值求解技术和代理模型方法,采用数值模拟和实验验证相结合的方法,对经典蜂窝夹层结构和波纹型蜂窝夹层结构(俗称瓦楞板)进行了抗撞性优化设计和对比研究。在研究经典蜂窝夹层结构时,首先对比了正六边形蜂窝夹层板与纯蜂窝结构的抗撞性能;其次采用析因设计方法筛选出对正六边形蜂窝夹层板的抗撞性影响较大的结构参数,并以比吸能为目标指标、最大撞击载荷为约束指标,采用响应面法对正六边形蜂窝夹层板进行了抗撞性优化设计;继而对正四边形蜂窝夹层板进行了有约束单目标和多目标抗撞性优化设计,并对具有最优构形的两种经典蜂窝夹层板的抗撞性进行了对比研究。在研究波纹形夹层板时,首先以吸能量为目标函数对梯形和三角形元胞的形状进行了优化设计;然后采用响应面方法对具有最优元胞形状的梯形夹层板的尺寸参数进行了抗撞性优化设计;最后对具有相同的面板厚度和夹芯层密度的两种波纹夹层板在低速局部冲击和平板冲击两种工况下的抗撞性进行了对比研究。本课题的研究方法对其他形式夹层板结构的抗撞性研究具有一定的理论参考价值,研究结果对工程实际应用中夹芯形状和结构参数的选取具有重要的指导意义。