位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络预测混凝土中氯离子浓度的分布
  • ISSN号:1002-3550
  • 期刊名称:《混凝土》
  • 时间:0
  • 分类:TU528.01[建筑科学—建筑技术科学]
  • 作者机构:[1]浙江大学结构工程研究所,浙江杭州310027
  • 相关基金:国家自然科学基金重点项目(50538070); 国家863项目(2006AA04Z422); 浙江省重大科技专项(2006C13090); 浙江自然科学基金项目(Y105011)
中文摘要:

现阶段对氯离子浓度预测大多基于Fick定律以及在此基础上的一些改进模型,其明显的缺点就是模型的参数较多,应用不便。而人工神经网络不需要研究各个影响因素间的关系,常用于对模糊问题的研究。基于BP神经网络与径向基函数神经网络,给出了预测混凝土中氯离子浓度分布的分析模型,并结合试验对比了两种方法的有效性,结果表明径向基函数神经网络比BP神经网络具有较好的准确性与稳定性。最后提出通过建立庞大的神经网络数据库来预测不同环境作用下不同配合比的混凝土在任意时刻的氯离子浓度分布。

英文摘要:

Presently,predicting chloride concentration mostly based on FICK's Law as well as some improved model in this foundation.The obvious shortcoming of this method is so many parameters to be determined before using,which results in poor application.However,the neural network does not need to study relationships between different factors,commonly used in fuzzy question research.In this paper,Back-Propagation Network and Radial Basis Function Network are engaged to predict chloride concentration in concrete.Furthermore,we verified the effectiveness of the method with the experimental data.The result shows that Radial Basis Function Network is better than Back-Propagation Network at accuracy and stability.Finally a suggestion has been proposed that by establishing huge neural network database chloride concentration of different mixture ratio concrete under different environment can be predicted.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《混凝土》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国住房和城乡建设部
  • 主办单位:中国建筑东北设计研究院有限公司
  • 主编:
  • 地址:沈阳市和平区光荣街65号中国建筑东北设计研究院有限公司
  • 邮编:110006
  • 邮箱:hntbjb@vip.163.com
  • 电话:024-62123865 83860449
  • 国际标准刊号:ISSN:1002-3550
  • 国内统一刊号:ISSN:21-1259/TU
  • 邮发代号:8-110
  • 获奖情况:
  • 中国建筑科学核心期刊,全国中文核心期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国剑桥科学文摘,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24168