推广了Buhler定理.设C是预Abel的正合范畴,如果A B1b→1C1d→1W1与A B2b→2C2d→2W2以及b:B1B2,c:C1C2使得(cb1,b2b)构成推出,且a2=ba1,d1=Coker(b1a1),d2=Coker(b2a2),则存在容许单态射h:W1W2,使得hd1=d2c.并进一步给出该定理的一个应用。
Continue to promote Buhler theorem. Let C be a pre-Abelian exact category. If A→B1b1→Cd1→W1,Aa2→B2b2→C2d2→W2 and b: B1→B2,c: C1→C2 admit( cb1,b2b) is a push-out and a2= ba1,d1= Coker( b1a1),d2= Coker( b2a2),then there exists an admissible monomorphism h: W1→W2,such that hd1= d2 c. Also give a further application of the main theorem.