研究了紧致度量空间X上的连续满映射f:X-→X的逆极限空间上移位映射σ:lim(X,f)→lim(X,f)的σ-传递、Ф-混合与弱Ф-敏感性.证明了:σ是Ф-混合的当且仅当f是Ф-混合的,其中空是一个满的Furstenberg族;σ是Ф-传递的当且仅当f是Ф-传递的,σ是弱Ф-敏感的当且仅当f是弱Ф-敏感的,其中Ф是一个Furstenberg.
Let Ф be a Furstenberg family. We research the dynamic properties of the shift map on the inverse limit space of a compact metric space and a sole bonding map. The following results are proved: the shift map on inverse limit space is Ф-transitive if and only if its sole bonding map is Ф-transitive; the shift map on inverse limit space is Ф-mixing if and only if its sole bonding map is Ф-mixing, where Ф is a full Furstenberg family; the shift map on inverse limit space is weakly Ф-sensitive if and only if its sole bonding map is weakly Ф-sensitive.