设X={x0,x1,…}是一个自密的可数度量空间.则对任意0〈δ〈diamX,存在X上的同胚φ满足:(a)X={φix0:i∈Z}且{φix0:i≥0},{φ-ix0:i≥0}均为X的稠密子集;(b)φ,φ-1均以X为其一个分布式δ-混沌集. 更多还原
Let X = {x0, xl,… } be a countable metric space without isolate point. Then for every 0 〈 5 〈 diamX there exists a homeomorphism Φon X such that (a) X = {Φ^ix0 : i∈Z} and either {Φ^ix0 : i ≥0} and {Φ-iXo : i ≥0} is dense in X and (b) X is a distributionally δchaotic set of either Φ or Φ^-1