由一个紧致度量空间X以及连续映射f:X→X所组成的偶对(X,f)称之为一个动力系统.若存在f的不动点P以及另一周期点q,使得对于任一非空开集U∩→X,都有U∞n=0fn(U)含有p和q,则称(X,f)是一个周期吸附系统,其中f^i表示f的i次迭代.本文指出:若(X,f)是一个周期吸附系统并且X是自密的,则存在一个f的分布混沌集D,使得D与每一非空开集之交都包含着一个Cantor集.
By a dynamical system (X, f) we mean a compact metric space X together with a continuous map f : X →X. A dynamical system (X, f) is called a periodically adsorbing system if there exist a fixed point p and a periodic point q ≠ p of f such that for any nonempty open set U ∩→ X, the set U∞n=1fn(U)) contains both p and q, where f^i is the ith iteration of f. It turns out that if (X, f) is a periodically adsorbing system and X is perfect, then there exists a distributional chaotic set D of f such that the intersection of D and any nonempty open set contains a Cantor set.