证明了Bochner-Riesz算子和CZ算子的交换子当a=n(1—1/q)时从空间HKq^a,p(ω1;ω2)到空间Kq^a,p,∞(ω1;ω2)的有界性,其中ω1,ω2是Muckernhoupt's A1权.
It is proved that the commutator about the Bochner-Riesz operator and the commutator about C-Z kernel are bounded from HKq^a,p(ω1;ω2) to Kq^a,p,∞(ω1;ω2) when a = n ( 1 - 1/q), where ω1,ω2 are Muckernhoupt's A1 weights.