位置:成果数据库 > 期刊 > 期刊详情页
采用动态分割与自适应滤波的弱小目标检测
  • 期刊名称:计算机仿真
  • 时间:0
  • 页码:239-241
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国民航局第二研究所,四川成都610041, [2]电子科技大学通信与信息工程学院,四川成都610054
  • 相关基金:国家自然科学基金重点项目(60736045)
  • 相关项目:大型机场活动目标避撞系统的基础理论与方法
中文摘要:

为了增强红外或者可见光图像数据中的弱小目标检测,提出了一种采用模糊C均值(FCM)聚类与迭代最小二乘(RLS)自适应滤波相结合的背景抑制方法。假设待检测目标在图像帧上具有极小的空域扩展度,且受到强背景杂波的干扰。对输入的图像首先采用FCM聚类划分为灰度准平稳的子域,再将整帧图像均匀划分为相同的子块,然后在每个子块中针对每类子域利用RLS滤波估计背景杂波并另以去除,结果只剩下目标信号与残留噪声。大量仿真试验表明与其它传统方法相比具有更好的检测性能。

英文摘要:

A method of background suppression using fuzzy c - means ( FCM ) clustering and recursive least square (RLS) filter is proposed to enhance the detection of dim small targets in IR or visual - light image data. The target to be detected is assumed to have a small spatial spread in a frame, and is obscured by heavy background clut- ter. The input data is firstly partitioned using FCM clustering, and each cluster is thought as a gray - level quasi - stationary subset. Secondly the image is partitioned to some sub - images uniformly, and then a RLS filter is applied to estimate background for each subset in each sub - image. Thus the background can be subtracted from input data, leaving components of the target signal in the residual noise. Many experiment results show better performance of de- tection by the method than by other traditional methods.

同期刊论文项目
期刊论文 37 会议论文 15 专利 4
同项目期刊论文