本文研究当q是单位根时,Vq(sl(2))在关系H^r=K^r=1,E^mr=F^mr=0下的商代数Vq(m,n)的构造与分解,以及它的区块结构.为此,首先将Uq(sl(2))的基本性质和重要结论推广到Vq(sl(2)),并研究Vq(sl(2))的模的基本性质.利用这些结论,我们逐步构造出Vq(m,n)的左理想,并将Vq(m,n)分解成不可分解的左理想的直和.然后,把Vq(m,n)的不可分解的左理想合并成区块,并研究区块结构,从而把Vq(m,n)的表示问题归结成一个代数表示论的问题.
In order to study a class of finite dimensional representations of Vq(sl(2)),the quotient algebra Vq(m, n) of quantum group Vq(sl[2)) with relations H^r=K^r = l, E^mr = F^nr = 0 is dealt with in this paper, where q is a root of unity. The algebra Vq(m, n) is decomposed into a direct sum of indecomposable ideals. The structures of indecomposable projective representations and their blocks are determined.