对形如f(x)=tr(∑﹂(n-1)/2」i,j=1bijxd)的n元布尔函数的二阶非线性度进行了研究,其中d=2i+2j+1,bij GF(2),1≤i〈j≤L(n-1)/2」.当n为奇数时,找出了函数f(x)达到最大非线性度的导数;当n为偶数时,找出了函数f(x)的半Bent函数的导数.基于这些具有高非线性度的导数,给出了f(x)二阶非线性度的紧下界.结果表明f(x)具有较高的二阶非线性度,可以抵抗二次函数逼近和仿射逼近攻击.
This paper deals with the second-order nonlinearities of the Boolean functions f(x)=tr(∑(n-1)/2」i,j=1bijxd) with n variables,where d=2i+2j+1,bij GF(2) and 1≤ij≤L(n-1)/2」.The derivatives with the maximal nonlinearity of f(x) are determined for odd n,and,for even n,the derivatives which are semi-Bent functions are obtained.Based on these derivatives with high nonlinerity,the tight lower bounds of the second-order nonlinearity of f(x) are given.The results show that f(x) with high second-order nonlinearity,can resist the quadratic and affine approximation attacks.