位置:成果数据库 > 期刊 > 期刊详情页
Electronic structure and optical properties of rutile RuO2 from first principles
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:O613.71[理学—无机化学;理学—化学] TM241[电气工程—电工理论与新技术;一般工业技术—材料科学与工程]
  • 作者机构:[1]School of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641112, China, [2]Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China, [3]College of Material and Chemical Engineering, Hainan University, Haikou 570228, China, [4]Chinese Academy of Engineering Physics, Mianyang 621900, China
  • 相关基金:Project supported by the China Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant Nos. 10676025 and 10574096), and the Science-Technology Foundation for Young Scientist of Sichuan Province, China (Grant No. 09ZQ026-049).
中文摘要:

The systematic trends of electrionic structure and optical properties of rutile (P42 /mnm) RuO2 have been calculated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method within the generalised gradient approximation (GGA) for the exchange-correlation potential.The obtained equilibrium structure parameters are in excellent agreement with the experimental data.The calculated bulk modulus and elastic constants are also in good agreement with the experimental data and available theoretical calculations.Analysis based on electronic structure and pseudogap reveals that the bonding nature in RuO2 is a combination of covalent,ionic and metallic bonds.Based on a Kramers-Kronig analysis of the reflectivity,we have obtained the spectral dependence of the real and imaginary parts of the complex dielectric constant (ε1 and ε2,respectively) and the refractive index (n);and comparisons have shown that the theoretical results agree well with the experimental data as well.Meanwhile,we have also calculated the absorption coefficient,reflectivity index,electron energy loss function of RuO2 for radiation up to 30 eV.As a result,the predicted reflectivity index is in good agreement with the experimental data at low energies.

英文摘要:

The systematic trends of electrionic structure and optical properties of rutile (P42/mnm) RuO2 have been cal- culated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method within the generalised gradient approximation (GGA) for the exchange-correlation potential. The obtained equilibrium structure parameters are in excellent agreement with the experimental data. The calculated bulk modulus and elastic constants are also in good agreement with the experimental data and available theoretical calculations. Analysis based on elec- tronic structure and pseudogap reveals that the bonding nature in RuO2 is a combination of covalent, ionic and metallic bonds. Based on a Kramers Kronig analysis of the reflectivity, we have obtained the spectral dependence of the real and imaginary parts of the complex dielectric constant (~1 and z2, respectively) and the refractive index (n); and comparisons have shown that the theoretical results agree well with the experimental data as well. Meanwhile, we have also calculated the absorption coefficient, reflectivity index, electron energy loss function of RuO2 for radiation up to 30 eV. As a result, the predicted reflectivity index is in good agreement with the experimental data at low energies.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406