本文中,我们研究来自于两个multiple-outlier模型的最小次序统计量的随机比较,其中两个模型中独立同分布的随机变量个数不同.令X(1:n)(p,q)和X(1:n~*)(p~*,q~*)分别表示来自于X1,…,Xp,X(p+1),…,Xn和X1,…,X(p),X(p~*+1),…,X(n)的最小次序统计量,这里q=n-p,q~*=n~*-p~*.在参数(p,q)和(p~*,q~*)满足某些优化序条件下,我们根据普通随机序,失效率序和似然比序给出了X(1:n)(p,q)和X(1:n~*)(p~*,q~*)的序比较.
In this paper, we compare the smallest order statistics arising from multiple-outliermodels when the numbers of independent and identically distributed random variables are dif-ferent. Let Xi : n( p ,q ) and Xi:n * (p* ,q*) denote the smallest order statistics among Xi,...,X p, Xp +i,...,X n and Xi,...,X p * ,Xp *+i,...,X n *, respectively, where q = n - p and q* = n* - p*. We then prove that Xi:n (p,q) and Xi:n *(p*,q*) are ordered in terms of the usual stochastic order, hazard rate order and likelihood ratio order under the majorization relationship between (p,q) and(p*,q*).