对R^2上沿曲线(t,γ(t))的震荡积分算子T_(α,β)f(x,y)=∫_Rf(x-t,y-γ(t))e^-i︱t︱β-1t︱t︱^αdt进行研究,其中γ(t)=︱t︱^k或γ(t)=sgn(t)︱t︱^k.若对α,β进行适当的限制且k=0,1,2,则T_(α,β)在M_s^p,q上有界,其中1≤p≤∞,0〈q≤∞ and s∈R.
In this study, the oscillatory integral operator T_(α,β)f(x,y)=∫_Rf(x-t,y-γ(t))e^-i︱t︱β-1t︱t︱^αdt along the chive (t,γ(t)) in the two dimension space R^2 was studied, where γ(t)=︱t︱^k or γ(t)=sgn(t)︱t︱^k.If α,β satisfied some conditions and k =0, 1, 2, then operator Tα,β was bounded on Ms^p+q for 1≤p≤∞,0〈q≤∞ and s∈R.