在这份报纸,一低维多重输入、多重产量(MIMO ) 为预兆的控制(MPC ) 配置建模为部分微分方程(PDE ) 被介绍未知空间地分布式的系统(SDS ) 。首先,有主要部件分析(PCA ) 的尺寸减小被用来把高度维的时间空间的数据转变成低维的时间域。MPC 策略基于联机修正被建议低维的模型,在在一以前的时间的系统的状态被用来改正低维的模型的产量的地方。为靠近环的稳定性的足够的条件被介绍并且证明。模拟表明建议方法论的精确性和效率。
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.