本文讨论了滑动和过程的Xk=∑i=-∞^+∞ ciξk-i Spitzer和Baum-Katz律的精确渐近,其中{ξ,ξi-∞ 〈i〈∞)是双向无穷的独立同分布的随机变量序列,其共同分布属于某个半稳定律的(正则)吸引场,{ci,-∞〈i〈∞)满足某种可和条件的实数序列.为此,建立了Xk的一个基本定理,其本身也是有意义的.
In this paper, we discuss the precise asymptotics in Spitzer and Baum-Katz's law of large numbers for the moving average processes Xk=∑i=-∞^+∞ ciξk-i where {ξ,ξi-∞ 〈i〈∞)is a doubly infinite sequence of i.i.d, random variables with the distribution of ξ inthe (normal) domain of semistable attraction of.a semistable law, and {ci,-∞〈i〈∞)a sequence Of real numbers satisfying some summable condition. For this purpose, we also establish the general central limit theorem for Xk, which is of independent interest.