设{X,Xn,n≥0}是两两独立同分布的随机变量序列,1〈p〈2.本文在条件EX=μ,E|X|^p〈∞下获得了阶数大于1的Cesàro强大数定律的收敛速度,即当n→∞时,(An^α)^-1∑K=0^nAn-k^α-1Xk-μ=0(n^-1+1/p)a.s.,其中α〉1.为了证明这一结论而获得到的两两负相关随机变量序列的Cesàro强大数定律收敛速度的结果本身也是有意义的.此结果对于同分布的两两NQD序列也是对的.
Let {X, Xn,n 〉 0} be a sequence of pairwise independent identically dis- tributed random variables, 1 〈 p 〈 2. The paper obtains the convergent rate of Cesàro strong law of large number under the conditions EX=μ,E|X|^p〈∞, i.e. (An^α)^-1∑K=0^nAn-k^α-1Xk-μ=0(n^-1+1/p)a.s., where α 〉 1. In order to prove this result, the paper discusses the convergent rate of Cesàro strong law of large number for the sequence of pairwise negative correlational random variables and its is interested. The result also holds for identically distributed pairwise NQD sequences.