设B是一个超有限因子,T(N)是B中的正则套代数.给出了T(N)中的Lie理想的结构.证明了T(N)的一个σ-弱闭子空间L是T(N)的Lie理想当且仅当存在T(N)的一个σ-弱闭的结合理想J和T(N)的对角部分的中心的子空间E,使得,J^0包含于L包含于J+E,其中J^0为J中的迹为零的元的集合.
Let B be a hyperfinite factor and let T(N) be a regular nest subalgebra of B. It is proved that a a-weakly closed subspace L of T(N) is a Lie ideal in T(N) if there exist a σ- weakly closed associative ideal J of T(N) and a subspace E of the center of the diagonal part of T(N), such that J^0 lohtain in L lohtain in J+ E, where J^0 is the set of trace-zero elements in J.