设H是一个复Hilbert空间,B(H)s是H上的由自伴算子构成的一个Jordan代数.双线性映射d:B(H)s×B(H)s→B(H)s是B(H)s上的双Jordan导子当且仅当存在虚数λ使得任给a,b∈B(H)s都有d(a,b)=λ(ab-ba).双线性映射d:B(Hs)×B(H)s→B(H)s是B(H)s上的双广义Jordan导子当且仅当在H上存在有界线性算子x使得任给a,b∈B(H)s都有d(a,b)=axb+bx^*a.
Let H be a complex Hilbert space, B(H)s be a Jordan algebra of all self-adjoint operator on H. The following two theorems are proved. One is that a bilinear map d:B(H)s×B(H)s→B(H)s is a hi-Jordan derivation of B(H)s if and only if there exists a imaginary number λ such that d(a,b)=λ(ab-ba) for all a,b∈B(H)s. The other is that a bilinear map d:B(Hs)×B(H)s→B(H)s is a hi-generalized Jordan derivation of B(H)s if and only if there exists a bounded linear operator x on H such that d(a,b)=axb+bx^*a for all a,b∈B(H)s.