详细描述了Hilbert空间中原子CSL代数T(F)中的Lie理想的结构。证明了T(F)中的σ-弱算子拓扑闭子空间L是T(F)的Lie理想当且仅当存在T(F)的一个σ-弱算子拓扑闭结合理想J和T(F)的对角的中心的一个子空间E使得J^0 真包含 L 真包含 J+E,其中J^0是J,中迹为零的元素的全体。
A detailed description of the structure of a Lie ideal in an atomic CSL algebra T(F) on a Hilbert space H is given. It is proved that a a-weakly closed subspace L of T(F) is a Lie ideal in T(F) if and only if there exists a a-weakly closed associative ideal J of T(F) and a subspace E of the center of the diagonal part of T(F) such that J^0lohtain inLlohtainJ-kE,where .J^0 is the set of trace-zero elements in J.