设Tn(尺)是一个含单位元的可交换环尺上的上三角矩阵代数,引进了广义Jordan导子的概念,并证明了上三角矩阵代数上任意一个广义Jordan导子△可分解成一个广义导子φ和反导子δ之和,即△=φ+δ。
Let Tn (R) be upper triangular matrices algebras over a commutative ring with identity, M is A-bimodule. It is proved that every generalized Jordan derivation from Tn(R) into M is the sum of a generalized derivation and an antiderivation.