本文主要应用Mawhin重合度拓展定理研究了一类广义平均曲率方程((u'(t)/√1 +| u'(t)|2)' + f(u(t))=p(t)周期解的存在性问题,得到了周期解存在性的相关结果.
In this paper,the authors study the existence of periodic solutions for prescribed mean curvature equation (u'(t)/√1 +| u'(t)|2)' + f(u(t)) =p(t).where f ∈ C1(R,R),p ∈ C(R,R) and T-period.By using coincidence degree theory and some analysis methods,some existence results are presented.