本文研究了包含频散项的K(2,3)方程ut+(u^2)x-(u^3)xxx=0的分支问题.利用动力系统的定性分析,并且借助Maple软件进行数值模拟得到行波解系统相应的相图,然后通过积分计算得到周期尖波解、类扭波和类反扭波的精确解的函数表达式,以及孤立波精确解的隐函数表达式.
In this paper,we study the bifurcation of K(2,3) equation ut+(u^2)x-(u^3)xxx=0with osmosis dispersion.Using the qualitative analysis methods of dynamical system and numerical simulation by Maple programs,illustrative phase portraits corresponding to traveling wave system are presented,and expressions of a periodic cusp wave,kink-like and antikink-like wave solutions,and implicit expression of soliton are explicitly given after integrals.