本文研究如下具有奇性的Liénard型时滞平均曲率方程(u′(t)/√1+u′(t)^2)′+f(u(t))u'(t)+g(u(t-r))=e(t)的周期解的存在性问题.运用Mawhin重合度扩展定理,本文获得了该方程至少存在一个T-周期正解的新结果.最后本文给出一个例子来验证文章主要结论的有效性.
In this paper,we study existence of the periodic solutions to the following prescribed mean curvature Liénard equation with a singularity and a deviating argument(u′(t)/√1+u′(t)^2)′+f(u(t))u'(t)+g(u(t-r))=e(t).Applying Mawhin's continuation theorem,a new result on the existence of positive T-periodic solution for this equation is obtained.An example is given to illustrate the effectiveness of our results.