位置:成果数据库 > 期刊 > 期刊详情页
KPCA和RSVM结合处理大规模问题研究
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]山东科技大学信息科学与工程学院,山东青岛266510
  • 相关基金:国家自然科学基金项目(10571109)
中文摘要:

针对入侵检测中训练样本数量多、属性多这一问题,应用核主成份分析KernelPCA和简约支持向量机Reduced SVM相结合的方法,不但有效地提取了样本的非线性信息,而且使样本在维数上得到约简,减少了核矩阵的计算量。在标准入侵检测数据集上的实验表明:训练时间进一步减少,正确率得到提高,而误报率下降。

英文摘要:

The massive problems in the intrusion detection induced by too many instances and attributes are studied. A new method using Kernel PCA and Reduced SVM is proposed. The method not only extracts the nonlinear information from the samples effectively but also reduces dimensions and the computation requirements of the kernel matrix. Experiment implemented on the standard dataset shows that it needs little training time and the accuracy is higher while the false positive rate is lower.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909