位置:成果数据库 > 期刊 > 期刊详情页
一种基于组合核函数支持向量机的水下目标小波特征提取与识别方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科技大学 信息系统与管理学院 系统工程系 信息集成与训练模拟室,湖南长沙410073
  • 相关基金:国家自然科学基金(60273066,60473116)资助.
中文摘要:

准确的模式识别要求提取出的特征尽可能反映分类本质的特征.本文利用同态分析理论对水下声信号进行预处理,从最终接收到经过噪声干扰的目标信号中复原出能反映目标传输特性的原始信号,并在此基础上对信号进行离散小波变换,提取小波变换系数在不同区间上的尺度—过零密度、尺度—平均幅度特征,最终利用组合核函数支持向量机对提取出的特征进行分类识别.实验表明,提取出的特征能反映目标类别特点,该方法能对水下目标进行有效的识别.

英文摘要:

Precisely pattern recognition require that the extracted feature should reflect the essential character of classification as far as possible, In this paper, the underwater acoustic signal is preprocessed according to the theory of homomorphic analysis, the original signal which reflects the target' s transport character therefore can be reconstructed among the interfered noise signal. Based on this step, discrete wavelet transform is performed to extract features such as scale-zero cross density in multi interval and scale-magnitude from the transformed coefficients, Then a hybrid kernel function support vector machine is designed to recognize different targets. Experiments show that this method can achieve good performance in the underwater target recognition field.

同期刊论文项目
期刊论文 23 会议论文 8 著作 1
期刊论文 18 会议论文 8 著作 1
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212